

About

[image: Example StreamDeck Device]
This is an open source Python 3 library to control an Elgato Stream Deck [https://www.elgato.com/en/gaming/stream-deck] directly, without the official
software. This can allow you to create your own custom front-ends, such as a
custom control front-end for home automation software.

Index

Installation and Setup

	Library Installation
	HID Backend Setup
	Default LibUSB HIDAPI Backend
	Windows

	MacOS (Darwin)

	Linux (Ubuntu/Debian)

Module Documentation

	1. Modules: Device Discovery
	1.1. Device Manager
	DeviceManager
	DeviceManager.enumerate()

	ProbeError

	2. Modules: StreamDeck Devices
	2.1. StreamDeck (Abstract Base)
	StreamDeck
	StreamDeck.close()

	StreamDeck.connected()

	StreamDeck.deck_type()

	StreamDeck.get_firmware_version()

	StreamDeck.get_serial_number()

	StreamDeck.id()

	StreamDeck.is_open()

	StreamDeck.is_visual()

	StreamDeck.key_count()

	StreamDeck.key_image_format()

	StreamDeck.key_layout()

	StreamDeck.key_states()

	StreamDeck.open()

	StreamDeck.product_id()

	StreamDeck.reset()

	StreamDeck.set_brightness()

	StreamDeck.set_key_callback()

	StreamDeck.set_key_callback_async()

	StreamDeck.set_key_image()

	StreamDeck.set_poll_frequency()

	StreamDeck.vendor_id()

	2.2. StreamDeck Original
	StreamDeckOriginal
	StreamDeckOriginal.get_firmware_version()

	StreamDeckOriginal.get_serial_number()

	StreamDeckOriginal.reset()

	StreamDeckOriginal.set_brightness()

	StreamDeckOriginal.set_key_image()

	2.3. StreamDeck Mini
	StreamDeckMini
	StreamDeckMini.get_firmware_version()

	StreamDeckMini.get_serial_number()

	StreamDeckMini.reset()

	StreamDeckMini.set_brightness()

	StreamDeckMini.set_key_image()

	2.4. StreamDeck XL
	StreamDeckXL
	StreamDeckXL.get_firmware_version()

	StreamDeckXL.get_serial_number()

	StreamDeckXL.reset()

	StreamDeckXL.set_brightness()

	StreamDeckXL.set_key_image()

	2.5. StreamDeck Pedal
	StreamDeckPedal
	StreamDeckPedal.get_firmware_version()

	StreamDeckPedal.get_serial_number()

	StreamDeckPedal.reset()

	StreamDeckPedal.set_brightness()

	StreamDeckPedal.set_key_image()

	3. Modules: Communication Transports
	3.1. Transport (Abstract Base)
	Transport
	Transport.Device
	Transport.Device.close()

	Transport.Device.connected()

	Transport.Device.is_open()

	Transport.Device.open()

	Transport.Device.path()

	Transport.Device.product_id()

	Transport.Device.read()

	Transport.Device.read_feature()

	Transport.Device.vendor_id()

	Transport.Device.write()

	Transport.Device.write_feature()

	Transport.enumerate()

	Transport.probe()

	TransportError

	3.2. ‘LibUSB HIDAPI’ Library Transport
	LibUSBHIDAPI
	LibUSBHIDAPI.Device
	LibUSBHIDAPI.Device.close()

	LibUSBHIDAPI.Device.connected()

	LibUSBHIDAPI.Device.is_open()

	LibUSBHIDAPI.Device.open()

	LibUSBHIDAPI.Device.path()

	LibUSBHIDAPI.Device.product_id()

	LibUSBHIDAPI.Device.read()

	LibUSBHIDAPI.Device.read_feature()

	LibUSBHIDAPI.Device.vendor_id()

	LibUSBHIDAPI.Device.write()

	LibUSBHIDAPI.Device.write_feature()

	LibUSBHIDAPI.enumerate()

	LibUSBHIDAPI.probe()

	4. Modules: Image Helpers
	4.1. PIL Image Helper
	create_image()

	create_scaled_image()

	to_native_format()

Library Examples

	1. Example Script: Device Information

	2. Example Script: Basic Usage

	3. Example Script: Tiled Image

	4. Example Script: Animated Images

About

	Source Code

	Changelog

	License

Indices and tables

	Index

	Module Index

Library Installation

To install this library via the pip package manager, simply run
pip install streamdeck from a terminal.

The included examples require the PIL fork pillow, although it can be
swapped out if desired by the user application for any other image manipulation
library. This can also be installed with pip via pip install pillow.

HID Backend Setup

The library core is structured so that it can use one of (potentially) several
alternative HID backend libraries for the actual low level device
communications. You will need to install the dependencies appropriate to your
chosen backend for the library to work correctly.

Backends:

	Default LibUSB HIDAPI Backend

Default LibUSB HIDAPI Backend

This is the default and recommended backend - a cross platform library for
communicating with HID devices. Most systems will have this as a system package
available for easy installation.

Windows

Windows systems requires additional manual installation of a DLL in order to
function. The latest source for the hidapi.dll DLL is the releases page of
the libUSB GitHub project [https://github.com/libusb/hidapi/releases].

Place the DLL into a folder that has been added to your system %PATH%
directory list (typically this includes the C:\Windows\System32 folder but
adding a new path would be recommended instead of modifying your Windows
directory).

Ensure you use the correct DLL version for your installed Python version; i.e.
if you are using 32-bit Python, install the 32-bit hidapi.dll.

MacOS (Darwin)

On MacOS systems, you can choose to either compile the HIDAPI project [https://github.com/libusb/hidapi/] yourself, or install it via one of the
multiple third party package managers (e.g. brew install hidapi, when using
Homebrew).

Linux (Ubuntu/Debian)

On Linux, the libhidapi-libusb0 package is required can can be installed via
the system’s package manager.

The following script has been verified working on a Raspberry Pi (Models 2B and
4B) running a stock Debian Buster image, to install all the required
dependencies needed by this project on a fresh system:

Ensure system is up to date, upgrade all out of date packages
sudo apt update && sudo apt dist-upgrade -y

Install the pip Python package manager
sudo apt install -y python3-pip python3-setuptools

Install system packages needed for the default LibUSB HIDAPI backend
sudo apt install -y libudev-dev libusb-1.0-0-dev libhidapi-libusb0

Install system packages needed for the Python Pillow package installation
sudo apt install -y libjpeg-dev zlib1g-dev libopenjp2-7 libtiff5

Install python library dependencies
pip3 install wheel
pip3 install pillow

Add udev rule to allow all users non-root access to Elgato StreamDeck devices:
sudo tee /etc/udev/rules.d/10-streamdeck.rules << EOF
 SUBSYSTEMS=="usb", ATTRS{idVendor}=="0fd9", GROUP="users", TAG+="uaccess"
 EOF

Reload udev rules to ensure the new permissions take effect
 sudo udevadm control --reload-rules

Install the latest version of the StreamDeck library via pip
pip3 install streamdeck

Note that after adding the udev rules, you will need to remove and
re-attach any existing StreamDeck devices to ensure they adopt the new
permissions. This should allow you to access StreamDeck devices without
needing root permissions.

1. Modules: Device Discovery

1.1. Device Manager

	
class StreamDeck.DeviceManager.DeviceManager(transport=None)

	Central device manager, to enumerate any attached StreamDeck devices. An
instance of this class must be created in order to detect and use any
StreamDeck devices.

Creates a new StreamDeck DeviceManager, used to detect attached StreamDeck devices.

	Parameters

	transport (str) – name of the the specific HID transport back-end to use, None to auto-probe.

	
enumerate()

	Detect attached StreamDeck devices.

	Return type

	list(StreamDeck)

	Returns

	list of StreamDeck instances, one for each detected device.

	
exception StreamDeck.DeviceManager.ProbeError

	Exception thrown when attempting to probe for attached StreamDeck devices,
but no suitable valid transport was found.

2. Modules: StreamDeck Devices

2.1. StreamDeck (Abstract Base)

	
class StreamDeck.Devices.StreamDeck.StreamDeck(device)

	Represents a physically attached StreamDeck device.

	
close()

	Closes the device for input/output.

See also

See open() for the corresponding open method.

	
connected()

	Indicates if the physical StreamDeck device this instance is attached to
is still connected to the host.

	Return type

	bool

	Returns

	True if the deck is still connected, False otherwise.

	
deck_type()

	Retrieves the model of Stream Deck.

	Return type

	str

	Returns

	String containing the model name of the StreamDeck device..

	
abstract get_firmware_version()

	Gets the firmware version of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the firmware version of the attached device.

	
abstract get_serial_number()

	Gets the serial number of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the serial number of the attached device.

	
id()

	Retrieves the physical ID of the attached StreamDeck. This can be used
to differentiate one StreamDeck from another.

	Return type

	str

	Returns

	Identifier for the attached device.

	
is_open()

	Indicates if the StreamDeck device is currently open and ready for use.

	Return type

	bool

	Returns

	True if the deck is open, False otherwise.

	
is_visual()

	Returns whether the Stream Deck has a visual display output.

	Return type

	bool

	Returns

	True if the deck has a screen, False otherwise.

	
key_count()

	Retrieves number of physical buttons on the attached StreamDeck device.

	Return type

	int

	Returns

	Number of physical buttons.

	
key_image_format()

	Retrieves the image format accepted by the attached StreamDeck device.
Images should be given in this format when setting an image on a button.

See also

See set_key_image() method to update the
image displayed on a StreamDeck button.

	Return type

	dict()

	Returns

	Dictionary describing the various image parameters
(size, image format, image mirroring and rotation).

	
key_layout()

	Retrieves the physical button layout on the attached StreamDeck device.

	Return type

	(int, int)

	Return (rows, columns)

	Number of button rows and columns.

	
key_states()

	Retrieves the current states of the buttons on the StreamDeck.

	Return type

	list(bool)

	Returns

	List describing the current states of each of the buttons on
the device (True if the button is being pressed, False
otherwise).

	
open()

	Opens the device for input/output. This must be called prior to setting
or retrieving any device state.

See also

See close() for the corresponding close method.

	
product_id()

	Retrieves the product ID attached StreamDeck. This can be used
to determine the exact type of attached StreamDeck.

	Return type

	int

	Returns

	Product ID of the attached device.

	
abstract reset()

	Resets the StreamDeck, clearing all button images and showing the
standby image.

	
abstract set_brightness(percent)

	Sets the global screen brightness of the StreamDeck, across all the
physical buttons.

	Parameters

	percent (int/float) – brightness percent, from [0-100] as an int,
or normalized to [0.0-1.0] as a float.

	
set_key_callback(callback)

	Sets the callback function called each time a button on the StreamDeck
changes state (either pressed, or released).

Note

This callback will be fired from an internal reader thread.
Ensure that the given callback function is thread-safe.

Note

Only one callback can be registered at one time.

See also

See set_key_callback_async() method for
a version compatible with Python 3 asyncio asynchronous
functions.

	Parameters

	callback (function) – Callback function to fire each time a button
state changes.

	
set_key_callback_async(async_callback, loop=None)

	Sets the asynchronous callback function called each time a button on the
StreamDeck changes state (either pressed, or released). The given
callback should be compatible with Python 3’s asyncio routines.

Note

The asynchronous callback will be fired in a thread-safe
manner.

Note

This will override the callback (if any) set by
set_key_callback().

	Parameters

	
	async_callback (function) – Asynchronous callback function to fire
each time a button state changes.

	loop (asyncio.loop) – Asyncio loop to dispatch the callback into

	
abstract set_key_image(key, image)

	Sets the image of a button on the StreamDeck to the given image. The
image being set should be in the correct format for the device, as an
enumerable collection of bytes.

See also

See get_key_image_format() method for
information on the image format accepted by the device.

	Parameters

	
	key (int) – Index of the button whose image is to be updated.

	image (enumerable) – Raw data of the image to set on the button.
If None, the key will be cleared to a black
color.

	
set_poll_frequency(hz)

	Sets the frequency of the button polling reader thread, determining how
often the StreamDeck will be polled for button changes.

A higher frequency will result in a higher CPU usage, but a lower
latency between a physical button press and a event from the library.

	Parameters

	hz (int) – Reader thread frequency, in Hz (1-1000).

	
vendor_id()

	Retrieves the vendor ID attached StreamDeck. This can be used
to determine the exact type of attached StreamDeck.

	Return type

	int

	Returns

	Vendor ID of the attached device.

2.2. StreamDeck Original

	
class StreamDeck.Devices.StreamDeckOriginal.StreamDeckOriginal(device)

	Bases: StreamDeck

Represents a physically attached StreamDeck Original device.

	
get_firmware_version()

	Gets the firmware version of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the firmware version of the attached device.

	
get_serial_number()

	Gets the serial number of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the serial number of the attached device.

	
reset()

	Resets the StreamDeck, clearing all button images and showing the
standby image.

	
set_brightness(percent)

	Sets the global screen brightness of the StreamDeck, across all the
physical buttons.

	Parameters

	percent (int/float) – brightness percent, from [0-100] as an int,
or normalized to [0.0-1.0] as a float.

	
set_key_image(key, image)

	Sets the image of a button on the StreamDeck to the given image. The
image being set should be in the correct format for the device, as an
enumerable collection of bytes.

See also

See get_key_image_format() method for
information on the image format accepted by the device.

	Parameters

	
	key (int) – Index of the button whose image is to be updated.

	image (enumerable) – Raw data of the image to set on the button.
If None, the key will be cleared to a black
color.

2.3. StreamDeck Mini

	
class StreamDeck.Devices.StreamDeckMini.StreamDeckMini(device)

	Bases: StreamDeck

Represents a physically attached StreamDeck Mini device.

	
get_firmware_version()

	Gets the firmware version of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the firmware version of the attached device.

	
get_serial_number()

	Gets the serial number of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the serial number of the attached device.

	
reset()

	Resets the StreamDeck, clearing all button images and showing the
standby image.

	
set_brightness(percent)

	Sets the global screen brightness of the StreamDeck, across all the
physical buttons.

	Parameters

	percent (int/float) – brightness percent, from [0-100] as an int,
or normalized to [0.0-1.0] as a float.

	
set_key_image(key, image)

	Sets the image of a button on the StreamDeck to the given image. The
image being set should be in the correct format for the device, as an
enumerable collection of bytes.

See also

See get_key_image_format() method for
information on the image format accepted by the device.

	Parameters

	
	key (int) – Index of the button whose image is to be updated.

	image (enumerable) – Raw data of the image to set on the button.
If None, the key will be cleared to a black
color.

2.4. StreamDeck XL

	
class StreamDeck.Devices.StreamDeckXL.StreamDeckXL(device)

	Bases: StreamDeck

Represents a physically attached StreamDeck XL device.

	
get_firmware_version()

	Gets the firmware version of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the firmware version of the attached device.

	
get_serial_number()

	Gets the serial number of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the serial number of the attached device.

	
reset()

	Resets the StreamDeck, clearing all button images and showing the
standby image.

	
set_brightness(percent)

	Sets the global screen brightness of the StreamDeck, across all the
physical buttons.

	Parameters

	percent (int/float) – brightness percent, from [0-100] as an int,
or normalized to [0.0-1.0] as a float.

	
set_key_image(key, image)

	Sets the image of a button on the StreamDeck to the given image. The
image being set should be in the correct format for the device, as an
enumerable collection of bytes.

See also

See get_key_image_format() method for
information on the image format accepted by the device.

	Parameters

	
	key (int) – Index of the button whose image is to be updated.

	image (enumerable) – Raw data of the image to set on the button.
If None, the key will be cleared to a black
color.

2.5. StreamDeck Pedal

	
class StreamDeck.Devices.StreamDeckPedal.StreamDeckPedal(device)

	Bases: StreamDeck

Represents a physically attached StreamDeck Pedal device.

	
get_firmware_version()

	Gets the firmware version of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the firmware version of the attached device.

	
get_serial_number()

	Gets the serial number of the attached StreamDeck.

	Return type

	str

	Returns

	String containing the serial number of the attached device.

	
reset()

	Resets the StreamDeck, clearing all button images and showing the
standby image.

	
set_brightness(percent)

	Sets the global screen brightness of the StreamDeck, across all the
physical buttons.

	Parameters

	percent (int/float) – brightness percent, from [0-100] as an int,
or normalized to [0.0-1.0] as a float.

	
set_key_image(key, image)

	Sets the image of a button on the StreamDeck to the given image. The
image being set should be in the correct format for the device, as an
enumerable collection of bytes.

See also

See get_key_image_format() method for
information on the image format accepted by the device.

	Parameters

	
	key (int) – Index of the button whose image is to be updated.

	image (enumerable) – Raw data of the image to set on the button.
If None, the key will be cleared to a black
color.

3. Modules: Communication Transports

3.1. Transport (Abstract Base)

	
class StreamDeck.Transport.Transport.Transport

	Base transport layer, representing an abstract communication back-end which
can be used to discovery attached StreamDeck devices.

	
class Device

	Base connection device, representing an abstract connected device which
can be communicated with by an upper layer high level protocol.

	
abstract close()

	Closes the device for input/output.

See also

See open() for the
corresponding open method.

	
abstract connected()

	Indicates if the physical device object this instance is attached
to is still connected to the host.

	Return type

	bool

	Returns

	True if the device is still connected, False otherwise.

	
abstract is_open()

	Indicates if the physical device object this instance is attached
to has been opened by the host.

	Return type

	bool

	Returns

	True if the device is open, False otherwise.

	
abstract open()

	Opens the device for input/output. This must be called prior to
sending or receiving any reports.

See also

See close() for the
corresponding close method.

	
abstract path()

	Retrieves the logical path of the attached device within the
current system. This can be used to uniquely differentiate one
device from another.

	Return type

	str

	Returns

	Logical device path for the attached device.

	
abstract product_id()

	Retrieves the product ID value of the attached device.

	Return type

	int

	Returns

	Product ID of the attached device.

	
abstract read(length)

	Performs a blocking read of a HID In report from the open HID device.

	Parameters

	length (int) – Maximum length of the In report to read.

	Return type

	list(byte)

	Returns

	List of bytes containing the read In report. The first byte
of the report will be the Report ID of the report that was
read.

	
abstract read_feature(report_id, length)

	Reads a HID Feature report from the open HID device.

	Parameters

	
	report_id (int) – Report ID of the report being read.

	length (int) – Maximum length of the Feature report to read..

	Return type

	list(byte)

	Returns

	List of bytes containing the read Feature report. The
first byte of the report will be the Report ID of the
report that was read.

	
abstract vendor_id()

	Retrieves the vendor ID value of the attached device.

	Return type

	int

	Returns

	Vendor ID of the attached device.

	
abstract write(payload)

	Sends a HID Out report to the open HID device.

	Parameters

	payload (enumerable()) – Enumerate list of bytes to send to the
device, as an Out report. The first
byte of the report should be the Report
ID of the report being sent.

	Return type

	int

	Returns

	Number of bytes successfully sent to the device.

	
abstract write_feature(payload)

	Sends a HID Feature report to the open HID device.

	Parameters

	payload (enumerable()) – Enumerate list of bytes to send to the
device, as a feature report. The first
byte of the report should be the Report
ID of the report being sent.

	Return type

	int

	Returns

	Number of bytes successfully sent to the device.

	
abstract enumerate(vid, pid)

	Enumerates all available devices on the system using the current
transport back-end.

	Parameters

	
	vid (int) – USB Vendor ID to filter all devices by, None if the
device list should not be filtered by vendor.

	pid (int) – USB Product ID to filter all devices by, None if the
device list should not be filtered by product.

	Return type

	list(Transport.Device)

	Returns

	List of discovered devices that are available through this
transport back-end.

	
abstract static probe()

	Attempts to determine if the back-end is installed and usable. It is
expected that probe failures throw exceptions detailing their exact
cause of failure.

	
exception StreamDeck.Transport.Transport.TransportError

	Exception thrown when attempting to access a device using a backend
transport that has failed (for example, if the requested device could not
be accessed).

3.2. ‘LibUSB HIDAPI’ Library Transport

	
class StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI

	Bases: Transport

USB HID transport layer, using the LibUSB HIDAPI dynamically linked library
directly via ctypes.

	
class Device(hidapi, device_info)

	Bases: Device

Creates a new HID device instance, used to send and receive HID
reports from/to an attached USB HID device.

	Parameters

	device_info (dict()) – Device information dictionary describing
a single unique attached USB HID device.

	
close()

	Closes the HID device for input/output.

See also

See open() for the corresponding
open method.

	
connected()

	Indicates if the physical HID device this instance is attached to
is still connected to the host.

	Return type

	bool

	Returns

	True if the device is still connected, False otherwise.

	
is_open()

	Indicates if the physical device object this instance is attached
to has been opened by the host.

	Return type

	bool

	Returns

	True if the device is open, False otherwise.

	
open()

	Opens the HID device for input/output. This must be called prior to
sending or receiving any HID reports.

See also

See close() for the corresponding
close method.

	
path()

	Retrieves the logical path of the attached HID device within the
current system. This can be used to differentiate one HID device
from another.

	Return type

	str

	Returns

	Logical device path for the attached device.

	
product_id()

	Retrieves the product ID value of the attached device.

	Return type

	int

	Returns

	Product ID of the attached device.

	
read(length)

	Performs a non-blocking read of a HID In report from the open HID device.

	Parameters

	length (int) – Maximum length of the In report to read.

	Return type

	list(byte)

	Returns

	List of bytes containing the read In report. The first byte
of the report will be the Report ID of the report that was
read.

	
read_feature(report_id, length)

	Reads a HID Feature report from the open HID device.

	Parameters

	
	report_id (int) – Report ID of the report being read.

	length (int) – Maximum length of the Feature report to read..

	Return type

	list(byte)

	Returns

	List of bytes containing the read Feature report. The
first byte of the report will be the Report ID of the
report that was read.

	
vendor_id()

	Retrieves the vendor ID value of the attached device.

	Return type

	int

	Returns

	Vendor ID of the attached device.

	
write(payload)

	Sends a HID Out report to the open HID device.

	Parameters

	payload (enumerable()) – Enumerate list of bytes to send to the
device, as an Out report. The first
byte of the report should be the Report
ID of the report being sent.

	Return type

	int

	Returns

	Number of bytes successfully sent to the device.

	
write_feature(payload)

	Sends a HID Feature report to the open HID device.

	Parameters

	payload (enumerable()) – Enumerate list of bytes to send to the
device, as a feature report. The first
byte of the report should be the Report
ID of the report being sent.

	Return type

	int

	Returns

	Number of bytes successfully sent to the device.

	
enumerate(vid, pid)

	Enumerates all available USB HID devices on the system.

	Parameters

	
	vid (int) – USB Vendor ID to filter all devices by, None if the
device list should not be filtered by vendor.

	pid (int) – USB Product ID to filter all devices by, None if the
device list should not be filtered by product.

	Return type

	list(HID.Device)

	Returns

	List of discovered USB HID devices.

	
static probe()

	Attempts to determine if the back-end is installed and usable. It is
expected that probe failures throw exceptions detailing their exact
cause of failure.

4. Modules: Image Helpers

4.1. PIL Image Helper

	
StreamDeck.ImageHelpers.PILHelper.create_image(deck, background='black')

	Creates a new PIL Image with the correct image dimensions for the given
StreamDeck device’s keys.

See also

See to_native_format() method for converting a
PIL image instance to the native image format of a given
StreamDeck device.

	Parameters

	
	deck (StreamDeck) – StreamDeck device to generate a compatible image for.

	background (str) – Background color to use, compatible with PIL.Image.new().

	Return type

	PIL.Image

	Returns

	Created PIL image

	
StreamDeck.ImageHelpers.PILHelper.create_scaled_image(deck, image, margins=[0, 0, 0, 0], background='black')

	Creates a new key image that contains a scaled version of a given image,
resized to best fit the given StreamDeck device’s keys with the given
margins around each side.

The scaled image is centered within the new key image, offset by the given
margins. The aspect ratio of the image is preserved.

See also

See to_native_format() method for converting a
PIL image instance to the native image format of a given
StreamDeck device.

	Parameters

	
	deck (StreamDeck) – StreamDeck device to generate a compatible image for.

	image (Image) – PIL Image object to scale

	list(int) – Array of margin pixels in (top, right, bottom, left) order.

	background (str) – Background color to use, compatible with PIL.Image.new().

	Rtrype

	PIL.Image

	Returns

	Loaded PIL image scaled and centered

	
StreamDeck.ImageHelpers.PILHelper.to_native_format(deck, image)

	Converts a given PIL image to the native image format for a StreamDeck,
suitable for passing to set_key_image().

See also

See create_image() method for creating a PIL
image instance for a given StreamDeck device.

	Parameters

	
	deck (StreamDeck) – StreamDeck device to generate a compatible native image for.

	image (PIL.Image) – PIL Image to convert to the native StreamDeck image format

	Return type

	enumerable()

	Returns

	Image converted to the given StreamDeck’s native format

1. Example Script: Device Information

The following is a complete example script to enumerate any available StreamDeck
devices and print out all information on the device’s location and image format.

#!/usr/bin/env python3

Python Stream Deck Library
Released under the MIT license
#
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
#

Example script that prints out information about any discovered StreamDeck
devices to the console.

from StreamDeck.DeviceManager import DeviceManager

Prints diagnostic information about a given StreamDeck.
def print_deck_info(index, deck):
 image_format = deck.key_image_format()

 flip_description = {
 (False, False): "not mirrored",
 (True, False): "mirrored horizontally",
 (False, True): "mirrored vertically",
 (True, True): "mirrored horizontally/vertically",
 }

 print("Deck {} - {}.".format(index, deck.deck_type()))
 print("\t - ID: {}".format(deck.id()))
 print("\t - Serial: '{}'".format(deck.get_serial_number()))
 print("\t - Firmware Version: '{}'".format(deck.get_firmware_version()))
 print("\t - Key Count: {} (in a {}x{} grid)".format(
 deck.key_count(),
 deck.key_layout()[0],
 deck.key_layout()[1]))
 if deck.is_visual():
 print("\t - Key Images: {}x{} pixels, {} format, rotated {} degrees, {}".format(
 image_format['size'][0],
 image_format['size'][1],
 image_format['format'],
 image_format['rotation'],
 flip_description[image_format['flip']]))
 else:
 print("\t - No Visual Output")

if __name__ == "__main__":
 streamdecks = DeviceManager().enumerate()

 print("Found {} Stream Deck(s).\n".format(len(streamdecks)))

 for index, deck in enumerate(streamdecks):
 deck.open()
 deck.reset()

 print_deck_info(index, deck)

 deck.close()

2. Example Script: Basic Usage

The following is a complete example script to connect to attached StreamDeck
devices, display custom image/text graphics on the buttons and respond to press
events.

#!/usr/bin/env python3

Python Stream Deck Library
Released under the MIT license
#
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
#

Example script showing basic library usage - updating key images with new
tiles generated at runtime, and responding to button state change events.

import os
import threading

from PIL import Image, ImageDraw, ImageFont
from StreamDeck.DeviceManager import DeviceManager
from StreamDeck.ImageHelpers import PILHelper

Folder location of image assets used by this example.
ASSETS_PATH = os.path.join(os.path.dirname(__file__), "Assets")

Generates a custom tile with run-time generated text and custom image via the
PIL module.
def render_key_image(deck, icon_filename, font_filename, label_text):
 # Resize the source image asset to best-fit the dimensions of a single key,
 # leaving a margin at the bottom so that we can draw the key title
 # afterwards.
 icon = Image.open(icon_filename)
 image = PILHelper.create_scaled_image(deck, icon, margins=[0, 0, 20, 0])

 # Load a custom TrueType font and use it to overlay the key index, draw key
 # label onto the image a few pixels from the bottom of the key.
 draw = ImageDraw.Draw(image)
 font = ImageFont.truetype(font_filename, 14)
 draw.text((image.width / 2, image.height - 5), text=label_text, font=font, anchor="ms", fill="white")

 return PILHelper.to_native_format(deck, image)

Returns styling information for a key based on its position and state.
def get_key_style(deck, key, state):
 # Last button in the example application is the exit button.
 exit_key_index = deck.key_count() - 1

 if key == exit_key_index:
 name = "exit"
 icon = "{}.png".format("Exit")
 font = "Roboto-Regular.ttf"
 label = "Bye" if state else "Exit"
 else:
 name = "emoji"
 icon = "{}.png".format("Pressed" if state else "Released")
 font = "Roboto-Regular.ttf"
 label = "Pressed!" if state else "Key {}".format(key)

 return {
 "name": name,
 "icon": os.path.join(ASSETS_PATH, icon),
 "font": os.path.join(ASSETS_PATH, font),
 "label": label
 }

Creates a new key image based on the key index, style and current key state
and updates the image on the StreamDeck.
def update_key_image(deck, key, state):
 # Determine what icon and label to use on the generated key.
 key_style = get_key_style(deck, key, state)

 # Generate the custom key with the requested image and label.
 image = render_key_image(deck, key_style["icon"], key_style["font"], key_style["label"])

 # Use a scoped-with on the deck to ensure we're the only thread using it
 # right now.
 with deck:
 # Update requested key with the generated image.
 deck.set_key_image(key, image)

Prints key state change information, updates rhe key image and performs any
associated actions when a key is pressed.
def key_change_callback(deck, key, state):
 # Print new key state
 print("Deck {} Key {} = {}".format(deck.id(), key, state), flush=True)

 # Update the key image based on the new key state.
 update_key_image(deck, key, state)

 # Check if the key is changing to the pressed state.
 if state:
 key_style = get_key_style(deck, key, state)

 # When an exit button is pressed, close the application.
 if key_style["name"] == "exit":
 # Use a scoped-with on the deck to ensure we're the only thread
 # using it right now.
 with deck:
 # Reset deck, clearing all button images.
 deck.reset()

 # Close deck handle, terminating internal worker threads.
 deck.close()

if __name__ == "__main__":
 streamdecks = DeviceManager().enumerate()

 print("Found {} Stream Deck(s).\n".format(len(streamdecks)))

 for index, deck in enumerate(streamdecks):
 # This example only works with devices that have screens.
 if not deck.is_visual():
 continue

 deck.open()
 deck.reset()

 print("Opened '{}' device (serial number: '{}', fw: '{}')".format(
 deck.deck_type(), deck.get_serial_number(), deck.get_firmware_version()
))

 # Set initial screen brightness to 30%.
 deck.set_brightness(30)

 # Set initial key images.
 for key in range(deck.key_count()):
 update_key_image(deck, key, False)

 # Register callback function for when a key state changes.
 deck.set_key_callback(key_change_callback)

 # Wait until all application threads have terminated (for this example,
 # this is when all deck handles are closed).
 for t in threading.enumerate():
 try:
 t.join()
 except RuntimeError:
 pass

3. Example Script: Tiled Image

The following is a complete example script to display a larger image across a
StreamDeck, by sectioning up the image into key-sized tiles, and displaying
them individually onto each key.

#!/usr/bin/env python3

Python Stream Deck Library
Released under the MIT license
#
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
#

Example script showing how to tile a larger image across multiple buttons, by
first generating an image suitable for the entire deck, then cropping out and
applying key-sized tiles to individual keys of a StreamDeck.

import os
import threading

from PIL import Image, ImageOps
from StreamDeck.DeviceManager import DeviceManager
from StreamDeck.ImageHelpers import PILHelper

Folder location of image assets used by this example.
ASSETS_PATH = os.path.join(os.path.dirname(__file__), "Assets")

Generates an image that is correctly sized to fit across all keys of a given
StreamDeck.
def create_full_deck_sized_image(deck, key_spacing, image_filename):
 key_rows, key_cols = deck.key_layout()
 key_width, key_height = deck.key_image_format()['size']
 spacing_x, spacing_y = key_spacing

 # Compute total size of the full StreamDeck image, based on the number of
 # buttons along each axis. This doesn't take into account the spaces between
 # the buttons that are hidden by the bezel.
 key_width *= key_cols
 key_height *= key_rows

 # Compute the total number of extra non-visible pixels that are obscured by
 # the bezel of the StreamDeck.
 spacing_x *= key_cols - 1
 spacing_y *= key_rows - 1

 # Compute final full deck image size, based on the number of buttons and
 # obscured pixels.
 full_deck_image_size = (key_width + spacing_x, key_height + spacing_y)

 # Resize the image to suit the StreamDeck's full image size. We use the
 # helper function in Pillow's ImageOps module so that the image's aspect
 # ratio is preserved.
 image = Image.open(os.path.join(ASSETS_PATH, image_filename)).convert("RGBA")
 image = ImageOps.fit(image, full_deck_image_size, Image.LANCZOS)
 return image

Crops out a key-sized image from a larger deck-sized image, at the location
occupied by the given key index.
def crop_key_image_from_deck_sized_image(deck, image, key_spacing, key):
 key_rows, key_cols = deck.key_layout()
 key_width, key_height = deck.key_image_format()['size']
 spacing_x, spacing_y = key_spacing

 # Determine which row and column the requested key is located on.
 row = key // key_cols
 col = key % key_cols

 # Compute the starting X and Y offsets into the full size image that the
 # requested key should display.
 start_x = col * (key_width + spacing_x)
 start_y = row * (key_height + spacing_y)

 # Compute the region of the larger deck image that is occupied by the given
 # key, and crop out that segment of the full image.
 region = (start_x, start_y, start_x + key_width, start_y + key_height)
 segment = image.crop(region)

 # Create a new key-sized image, and paste in the cropped section of the
 # larger image.
 key_image = PILHelper.create_image(deck)
 key_image.paste(segment)

 return PILHelper.to_native_format(deck, key_image)

Closes the StreamDeck device on key state change.
def key_change_callback(deck, key, state):
 # Use a scoped-with on the deck to ensure we're the only thread using it
 # right now.
 with deck:
 # Reset deck, clearing all button images.
 deck.reset()

 # Close deck handle, terminating internal worker threads.
 deck.close()

if __name__ == "__main__":
 streamdecks = DeviceManager().enumerate()

 print("Found {} Stream Deck(s).\n".format(len(streamdecks)))

 for index, deck in enumerate(streamdecks):
 # This example only works with devices that have screens.
 if not deck.is_visual():
 continue

 deck.open()
 deck.reset()

 print("Opened '{}' device (serial number: '{}')".format(deck.deck_type(), deck.get_serial_number()))

 # Set initial screen brightness to 30%.
 deck.set_brightness(30)

 # Approximate number of (non-visible) pixels between each key, so we can
 # take those into account when cutting up the image to show on the keys.
 key_spacing = (36, 36)

 # Load and resize a source image so that it will fill the given
 # StreamDeck.
 image = create_full_deck_sized_image(deck, key_spacing, "Harold.jpg")

 print("Created full deck image size of {}x{} pixels.".format(image.width, image.height))

 # Extract out the section of the image that is occupied by each key.
 key_images = dict()
 for k in range(deck.key_count()):
 key_images[k] = crop_key_image_from_deck_sized_image(deck, image, key_spacing, k)

 # Use a scoped-with on the deck to ensure we're the only thread
 # using it right now.
 with deck:
 # Draw the individual key images to each of the keys.
 for k in range(deck.key_count()):
 key_image = key_images[k]

 # Show the section of the main image onto the key.
 deck.set_key_image(k, key_image)

 # Register callback function for when a key state changes.
 deck.set_key_callback(key_change_callback)

 # Wait until all application threads have terminated (for this example,
 # this is when all deck handles are closed).
 for t in threading.enumerate():
 try:
 t.join()
 except RuntimeError:
 pass

4. Example Script: Animated Images

The following is a complete example script to connect to attached StreamDeck
devices, and display animated graphics on the keys.

#!/usr/bin/env python3

Python Stream Deck Library
Released under the MIT license
#
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
#

Example script showing one way to display animated images using the
library, by pre-rendering all the animation frames into the StreamDeck
device's native image format, and displaying them with a periodic
timer.

import itertools
import os
import threading
import time

from fractions import Fraction
from PIL import Image, ImageSequence
from StreamDeck.DeviceManager import DeviceManager
from StreamDeck.ImageHelpers import PILHelper
from StreamDeck.Transport.Transport import TransportError

Folder location of image assets used by this example.
ASSETS_PATH = os.path.join(os.path.dirname(__file__), "Assets")

Animation frames per second to attempt to display on the StreamDeck devices.
FRAMES_PER_SECOND = 30

Loads in a source image, extracts out the individual animation frames (if
any) and returns a list of animation frames in the StreamDeck device's
native image format.
def create_animation_frames(deck, image_filename):
 icon_frames = list()

 # Open the source image asset.
 icon = Image.open(os.path.join(ASSETS_PATH, image_filename))

 # Iterate through each animation frame of the source image
 for frame in ImageSequence.Iterator(icon):
 # Create new key image of the correct dimensions, black background.
 frame_image = PILHelper.create_scaled_image(deck, frame)

 # Pre-convert the generated image to the native format of the StreamDeck
 # so we don't need to keep converting it when showing it on the device.
 native_frame_image = PILHelper.to_native_format(deck, frame_image)

 # Store the rendered animation frame for later user.
 icon_frames.append(native_frame_image)

 # Return the decoded list of frames - the caller will need to decide how to
 # sequence them for display.
 return icon_frames

Closes the StreamDeck device on key state change.
def key_change_callback(deck, key, state):
 # Use a scoped-with on the deck to ensure we're the only thread using it
 # right now.
 with deck:
 # Reset deck, clearing all button images.
 deck.reset()

 # Close deck handle, terminating internal worker threads.
 deck.close()

if __name__ == "__main__":
 streamdecks = DeviceManager().enumerate()

 print("Found {} Stream Deck(s).\n".format(len(streamdecks)))

 for index, deck in enumerate(streamdecks):
 # This example only works with devices that have screens.
 if not deck.is_visual():
 continue

 deck.open()
 deck.reset()

 print("Opened '{}' device (serial number: '{}')".format(deck.deck_type(), deck.get_serial_number()))

 # Set initial screen brightness to 30%.
 deck.set_brightness(30)

 # Pre-render a list of animation frames for each source image, in the
 # native display format so that they can be quickly sent to the device.
 print("Loading animations...")
 animations = [
 create_animation_frames(deck, "Elephant_Walking_animated.gif"),
 create_animation_frames(deck, "RGB_color_space_animated_view.gif"),
 create_animation_frames(deck, "Simple_CV_Joint_animated.gif"),
]
 print("Ready.")

 # Create a mapping of StreamDeck keys to animation image sets that will
 # be displayed.
 key_images = dict()
 for k in range(deck.key_count()):
 # Each key gets an infinite cycle generator bound to the animation
 # frames, so it will loop the animated sequence forever.
 key_images[k] = itertools.cycle(animations[k % len(animations)])

 # Helper function that will run a periodic loop which updates the
 # images on each key.
 def animate(fps):
 # Convert frames per second to frame time in seconds.
 #
 # Frame time often cannot be fully expressed by a float type,
 # meaning that we have to use fractions.
 frame_time = Fraction(1, fps)

 # Get a starting absolute time reference point.
 #
 # We need to use an absolute time clock, instead of relative sleeps
 # with a constant value, to avoid drifting.
 #
 # Drifting comes from an overhead of scheduling the sleep itself -
 # it takes some small amount of time for `time.sleep()` to execute.
 next_frame = Fraction(time.monotonic())

 # Periodic loop that will render every frame at the set FPS until
 # the StreamDeck device we're using is closed.
 while deck.is_open():
 try:
 # Use a scoped-with on the deck to ensure we're the only
 # thread using it right now.
 with deck:
 # Update the key images with the next animation frame.
 for key, frames in key_images.items():
 deck.set_key_image(key, next(frames))
 except TransportError as err:
 print("TransportError: {0}".format(err))
 # Something went wrong while communicating with the device
 # (closed?) - don't re-schedule the next animation frame.
 break

 # Set the next frame absolute time reference point.
 #
 # We are running at the fixed `fps`, so this is as simple as
 # adding the frame time we calculated earlier.
 next_frame += frame_time

 # Knowing the start of the next frame, we can calculate how long
 # we have to sleep until its start.
 sleep_interval = float(next_frame) - time.monotonic()

 # Schedule the next periodic frame update.
 #
 # `sleep_interval` can be a negative number when current FPS
 # setting is too high for the combination of host and
 # StreamDeck to handle. If this is the case, we skip sleeping
 # immediately render the next frame to try to catch up.
 if sleep_interval >= 0:
 time.sleep(sleep_interval)

 # Kick off the key image animating thread.
 threading.Thread(target=animate, args=[FRAMES_PER_SECOND]).start()

 # Register callback function for when a key state changes.
 deck.set_key_callback(key_change_callback)

 # Wait until all application threads have terminated (for this example,
 # this is when all deck handles are closed).
 for t in threading.enumerate():
 try:
 t.join()
 except RuntimeError:
 pass

Source Code

Source code is available on Github [https://github.com/abcminiuser/python-elgato-streamdeck/]. Bug reports, patches, suggestions and other contributions welcome.

Changelog

	Version 0.9.3:
	
	Added support for a new sub-variant of the StreamDeck XL.

	Version 0.9.2:
	
	Added support for a new sub-variant of the StreamDeck Mini.

	Version 0.9.1:
	
	Transport errors now trigger a closing of the underlying StreamDeck device, so further API calls will throw correctly (and is_open() will return False).

	Updated animated example script to use separate cycle generators for each key, so the animations play at the correct rate regardless of key count.

	Added support for the StreamDeck pedal.

	Added new is_visual() function.

	Version 0.9.0:
	
	Added new set_poll_frequency() function.

	Added new is_open() function.

	Fixed a possible internal thread join error when a deck object was closed.

	Version 0.8.5:
	
	Add support for the new StreamDeck MK2.

	Version 0.8.4:
	
	Updated animated example script to attempt to maintain a constant FPS, regardless of rendering time.

	Fixed a race condition in the LibUSB HIDAPI transport backend that could cause crashes when a device was closed.

	Version 0.8.3:
	
	Altered LibUSB transport workaround to only apply on Mac.

	Fixed internal _extract_string() method to discard all data after the first NUL byte, fixing corrupt serial number strings being returned in some cases.

	Set minimum Python version to 3.8, as some of the library uses newer syntax/core library features.

	Version 0.8.2:
	
	Added new PILHelper.create_scaled_image() function to easily generate scaled/padded key images for a given deck.

	Updated LibUSB transport backend so that device paths are returned as UTF-8 strings, not raw bytes.

	Updated version/serial number string extraction from StreamDecks so that invalid characters are substituted, rather than raising a UnicodeDecodeError error.

	Added LibUSB transport workaround for a bug on Mac platforms when using older versions of the library.

	Version 0.8.1:
	
	Fixed memory leak in LibUSB HIDAPI transport backend.

	Version 0.8.0:
	
	Fix random crashes in LibUSB HIDAPI transport backend on Windows, as the API is not thread safe.

	Added support for atomic updates of StreamDeck instances via the Python with scope syntax.

	Version 0.7.3:
	
	Fix crash in new LibUSB HIDAPI transport backend on systems with multiple connected StreamDeck devices.

	Fix crash in new LibUSB HIDAPI transport backend when connected() was called on a StreamDeck instance.

	Version 0.7.2:
	
	Documentation restructuring to move installation out of the readme and into the library documentation.

	Version 0.7.1:
	
	Cleaned up new LibUSB HIDAPI transport backend, so that it only searches for OS-specific library files.

	Fixed minor typo in the libUSB HIDAPI transport backend probe failure message.

	Version 0.7.0:
	
	Removed old HID and HIDAPI backends, added new ctypes based LibUSB-HIDAPI backend replacement.

	Version 0.6.3:
	
	Added support for the new V2 hardware revision of the StreamDeck Original.

	Version 0.6.2:
	
	Fixed broken StreamDeck XL communications on Linux.

	Added blacklist for the libhidapi-hidraw system library which breaks StreamDeck Original communications.

	Version 0.6.1:
	
	Fixed broken HIDAPI backend probing.

	Fixed double-open of HID backend devices causing connection issues on some platforms.

	Version 0.6.0:
	
	Added support for the HID Python package. This new HID backend is strongly recommended over the old HIDAPI backend.

	Added auto-probing of installed backends, if no specific transport is supplied when constructing a DeviceManager instance.

	Version 0.5.1:
	
	Fixed StreamDeck XL reporting swapped rows/columns count.

	Fixed StreamDeck XL failing to report correct serial number and firmware version.

	Version 0.5.0:
	
	Fixed StreamDeck devices occasionally showing partial old frames on initial connection.

	Removed support for RAW pixel images, StreamDeck Mini and Original take BMP images.

	Removed width and height information from Deck key image dict, now returned as size tuple entry.

	Version 0.4.0:
	
	Added StreamDeck XL support.

	Version 0.3.2:
	
	Fixed StreamDeck Mini key images not updating under some circumstances.

	Version 0.3.1:
	
	Added animated image example script.

	Version 0.3:
	
	Remapped StreamDeck key indexes so that key 0 is located on the physical
top-left of all supported devices.

	Version 0.2.4:
	
	Added new StreamDeck.get_serial_number() function.

	Added new StreamDeck.get_firmware_version() function.

	Version 0.2.3:
	
	Added new StreamDeck.ImageHelpers modules for easier key image generation.

License

Released under the MIT license below.

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose is hereby granted without
fee, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 StreamDeck	

 	
 	
 StreamDeck.DeviceManager	

 	
 	
 StreamDeck.Devices.StreamDeck	

 	
 	
 StreamDeck.Devices.StreamDeckMini	

 	
 	
 StreamDeck.Devices.StreamDeckOriginal	

 	
 	
 StreamDeck.Devices.StreamDeckPedal	

 	
 	
 StreamDeck.Devices.StreamDeckXL	

 	
 	
 StreamDeck.ImageHelpers.PILHelper	

 	
 	
 StreamDeck.Transport.LibUSBHIDAPI	

 	
 	
 StreamDeck.Transport.Transport	

Index

 C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W

C

 	
 	close() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	connected() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	
 	create_image() (in module StreamDeck.ImageHelpers.PILHelper)

 	create_scaled_image() (in module StreamDeck.ImageHelpers.PILHelper)

D

 	
 	deck_type() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	
 	DeviceManager (class in StreamDeck.DeviceManager)

E

 	
 	enumerate() (StreamDeck.DeviceManager.DeviceManager method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI method)

 	(StreamDeck.Transport.Transport.Transport method)

G

 	
 	get_firmware_version() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Devices.StreamDeckMini.StreamDeckMini method)

 	(StreamDeck.Devices.StreamDeckOriginal.StreamDeckOriginal method)

 	(StreamDeck.Devices.StreamDeckPedal.StreamDeckPedal method)

 	(StreamDeck.Devices.StreamDeckXL.StreamDeckXL method)

 	
 	get_serial_number() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Devices.StreamDeckMini.StreamDeckMini method)

 	(StreamDeck.Devices.StreamDeckOriginal.StreamDeckOriginal method)

 	(StreamDeck.Devices.StreamDeckPedal.StreamDeckPedal method)

 	(StreamDeck.Devices.StreamDeckXL.StreamDeckXL method)

I

 	
 	id() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	is_open() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	
 	is_visual() (StreamDeck.Devices.StreamDeck.StreamDeck method)

K

 	
 	key_count() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	key_image_format() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	
 	key_layout() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	key_states() (StreamDeck.Devices.StreamDeck.StreamDeck method)

L

 	
 	LibUSBHIDAPI (class in StreamDeck.Transport.LibUSBHIDAPI)

 	
 	LibUSBHIDAPI.Device (class in StreamDeck.Transport.LibUSBHIDAPI)

M

 	
 	
 module

 	StreamDeck.DeviceManager

 	StreamDeck.Devices.StreamDeck

 	StreamDeck.Devices.StreamDeckMini

 	StreamDeck.Devices.StreamDeckOriginal

 	StreamDeck.Devices.StreamDeckPedal

 	StreamDeck.Devices.StreamDeckXL

 	StreamDeck.ImageHelpers.PILHelper

 	StreamDeck.Transport.LibUSBHIDAPI

 	StreamDeck.Transport.Transport

O

 	
 	open() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

P

 	
 	path() (StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	probe() (StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI static method)

 	(StreamDeck.Transport.Transport.Transport static method)

 	
 	ProbeError

 	product_id() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

R

 	
 	read() (StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	read_feature() (StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	
 	reset() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Devices.StreamDeckMini.StreamDeckMini method)

 	(StreamDeck.Devices.StreamDeckOriginal.StreamDeckOriginal method)

 	(StreamDeck.Devices.StreamDeckPedal.StreamDeckPedal method)

 	(StreamDeck.Devices.StreamDeckXL.StreamDeckXL method)

S

 	
 	set_brightness() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Devices.StreamDeckMini.StreamDeckMini method)

 	(StreamDeck.Devices.StreamDeckOriginal.StreamDeckOriginal method)

 	(StreamDeck.Devices.StreamDeckPedal.StreamDeckPedal method)

 	(StreamDeck.Devices.StreamDeckXL.StreamDeckXL method)

 	set_key_callback() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	set_key_callback_async() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	set_key_image() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Devices.StreamDeckMini.StreamDeckMini method)

 	(StreamDeck.Devices.StreamDeckOriginal.StreamDeckOriginal method)

 	(StreamDeck.Devices.StreamDeckPedal.StreamDeckPedal method)

 	(StreamDeck.Devices.StreamDeckXL.StreamDeckXL method)

 	set_poll_frequency() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	StreamDeck (class in StreamDeck.Devices.StreamDeck)

 	
 StreamDeck.DeviceManager

 	module

 	
 StreamDeck.Devices.StreamDeck

 	module

 	
 	
 StreamDeck.Devices.StreamDeckMini

 	module

 	
 StreamDeck.Devices.StreamDeckOriginal

 	module

 	
 StreamDeck.Devices.StreamDeckPedal

 	module

 	
 StreamDeck.Devices.StreamDeckXL

 	module

 	
 StreamDeck.ImageHelpers.PILHelper

 	module

 	
 StreamDeck.Transport.LibUSBHIDAPI

 	module

 	
 StreamDeck.Transport.Transport

 	module

 	StreamDeckMini (class in StreamDeck.Devices.StreamDeckMini)

 	StreamDeckOriginal (class in StreamDeck.Devices.StreamDeckOriginal)

 	StreamDeckPedal (class in StreamDeck.Devices.StreamDeckPedal)

 	StreamDeckXL (class in StreamDeck.Devices.StreamDeckXL)

T

 	
 	to_native_format() (in module StreamDeck.ImageHelpers.PILHelper)

 	Transport (class in StreamDeck.Transport.Transport)

 	
 	Transport.Device (class in StreamDeck.Transport.Transport)

 	TransportError

V

 	
 	vendor_id() (StreamDeck.Devices.StreamDeck.StreamDeck method)

 	(StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

W

 	
 	write() (StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

 	
 	write_feature() (StreamDeck.Transport.LibUSBHIDAPI.LibUSBHIDAPI.Device method)

 	(StreamDeck.Transport.Transport.Transport.Device method)

Example Script: Pedal

The following is an example script to connect to the Stream Deck Pedal, and print whenever its buttons are pushed and released.

#!/usr/bin/env python3

Python Stream Deck Library
Released under the MIT license
#
dean [at] fourwalledcubicle [dot] com
www.fourwalledcubicle.com
#

Example script showing basic library usage, printing button presses. This
example only shows key events, and is intended to demonstrate how to get
such events from device that lack screens, i.e. the StreamDeck Pedal.

import threading

from StreamDeck.DeviceManager import DeviceManager

def key_change_callback(deck, key, state):
 print("Deck {} Key {} = {}".format(deck.id(), key, "down" if state else "up"), flush=True)

if __name__ == "__main__":
 streamdecks = DeviceManager().enumerate()

 print("Found {} Stream Deck(s).\n".format(len(streamdecks)))

 for index, deck in enumerate(streamdecks):
 deck.open()

 print("Opened '{}' device (serial number: '{}', fw: '{}')".format(
 deck.deck_type(), deck.get_serial_number(), deck.get_firmware_version()
))

 # Register callback function for when a key state changes.
 deck.set_key_callback(key_change_callback)

 # Wait until all application threads have terminated (for this example,
 # this is when all deck handles are closed).
 for t in threading.enumerate():
 try:
 t.join()
 except RuntimeError:
 pass

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 About

 		
 Library Installation

 		
 HID Backend Setup

 		
 Default LibUSB HIDAPI Backend

 		
 Modules: Device Discovery

 		
 Device Manager

 		
 DeviceManager

 		
 ProbeError

 		
 Modules: StreamDeck Devices

 		
 StreamDeck (Abstract Base)

 		
 StreamDeck

 		
 StreamDeck Original

 		
 StreamDeckOriginal

 		
 StreamDeck Mini

 		
 StreamDeckMini

 		
 StreamDeck XL

 		
 StreamDeckXL

 		
 StreamDeck Pedal

 		
 StreamDeckPedal

 		
 Modules: Communication Transports

 		
 Transport (Abstract Base)

 		
 Transport

 		
 TransportError

 		
 ‘LibUSB HIDAPI’ Library Transport

 		
 LibUSBHIDAPI

 		
 Modules: Image Helpers

 		
 PIL Image Helper

 		
 create_image()

 		
 create_scaled_image()

 		
 to_native_format()

 		
 Example Script: Device Information

 		
 Example Script: Basic Usage

 		
 Example Script: Tiled Image

 		
 Example Script: Animated Images

 		
 Source Code

 		
 Changelog

 		
 License

_images/ExampleDeck.jpg

